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Abstract. A delayed differential equation modelling a single neuron with inertial term subject to time
delay is considered in this paper. Hopf bifurcation is studied by using the normal form theory of retarded
functional differential equations. When adopting a nonmonotonic activation function, chaotic behavior is
observed. Phase plots, waveform plots, and power spectra are presented to confirm the chaoticity.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems

1 Introduction

In recent years, dynamical characteristics of neural net-
works have become a focal subject of intensive research
studies. Bifurcations and chaotic phenomena have been
investigated in various neural networks. For example,
chaotic solutions were obtained in a neural network con-
sisting of 26 neurons in [1]. Numerical solutions of differ-
ential equations with electronic circuit models of chaotic
neural networks were qualitatively studied in [2]. In [3], a
chaotic neural network with four neurons was investigated.
Chaotic behavior was found in a cellular neural network
with three cells in [4]. In [5], chaotic phenomenon in a
three-neuron hysteretic Hopfield-type neural network was
discussed. In [6], a high-dimensional chaotic neural net-
work under external sinusoidal force was studied. In [7],
bifurcation and chaos as well as their control in a system
of strongly connected neural oscillators were discussed.
In [8,9], a discrete-time transiently chaotic neural network
was studied. The chaotic phenomenon in a neural network
learning algorithm was reported in [10]. Moreover, chaotic
behaviors of inertial neural networks are studied in [11,12].
On the other hand, there are extensive literatures studied
neural network models with delays. For example, bifurca-
tions and chaotic dynamics of neural networks with dis-
crete and distributed delays were studied in [13–21].

In this paper, the dynamical behaviors of a single de-
layed neuron model with inertial terms are investigated.
The work presented in this paper can be considered as an
extension of the works for inertial neural network without
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delays [11,12] to the case with delays, or an extension of
the work for single neuron without inertial terms [13] to
the case with inertial terms.

The paper is organized as follows. The delayed iner-
tial neuron model is described, and the local stability and
the existence of Hopf bifurcation is studied in Section 2.
In Section 3, the properties of the bifurcating periodic
solutions are analyzed based on the normal form theory
developed in [22]. To justify the theoretical analysis, a nu-
merical example is given in Section 4. In Section 5, the
observed chaotic behavior of the model with a nonmono-
tonic activation function is reported. Finally, conclusions
are drawn in Section 6.

2 Local stability and the existence of Hopf
bifurcation

The single inertial neuron with time delay, similar to that
in [13] but with an inertial term, is described by

ẍ = −aẋ− bx+ cf(x− hx(t− τ)) (1)

where constants a, b, c > 0, h ≥ 0, and τ > 0 is the time
delay. Without loss of generality, assume that the acti-
vation function f(.) in the above equation is a nonlinear
function and its third-order continuous derivative exists.
In [27,28], the authors studied the presence of limit cycles,
two-tori and multistability in a damped harmonic oscilla-
tor with delayed negative feedback, which is structurally
similar to system (1). But the function f in that model is
a special delayed feedback function, while in our model, it
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L(ϕ) =

[
ϕ2(0)

−(b − cf ′(0))ϕ1(0) − aϕ2(0) − chf ′(0)ϕ1(−τ )

]

F (ϕ) =

[
0

cf ′′(0)
2

ϕ2
1(0) + cf ′′′(0)

6
ϕ3

1(0) − chf ′′(0)
2

ϕ2
1(−τ ) − chf ′′′(0)

6
ϕ3

1(−τ ) + · · ·
] (5)

is a general nonlinear function. Define

x1(t) ≡ x(t) − hx(t− τ), t ∈ [−τ,+∞).

Then, we have

ẋ1(t) = x2(t)
ẋ2(t) = −ax2(t) − bx1(t) + cf(x1(t)) − chf(x1(t− τ)).

(2)
The phase space is C := C([−τ, 0];R2). Throughout this
paper, assume that the following conditions are satisfied:

f(0) = 0, f ′(0) > 0, |c(1 − h)| < 1/f ′(0).

It is clear that (2) has an unique equilibrium (0, 0) under
the above condition. It is also easy to see that if there
is no delay term in (1), i.e. h = 0, then the model is
asymptotically stable when

b− cf ′(0) > 0. (3)

In the following, we estimate the value of h that preserves
the system stability under the above condition.

For convenience, we restate here a result of Bellman
and Cooke [24, Theorem 13.9].

Lemma 1 [24]: Let H(z) ≡ (z2 +pz+ q)ez + r, where p is
real and positive, q is real and nonnegative, and r is real.
Denote by ak (k ≥ 0) the sole root of the equation

cota =
(
a2 − q

)
/ap

which lies on the interval (kπ, kπ+ π). Define the natural
number n as follows:

1. if r ≥ 0 and p2 ≥ 2q, n = 1;
2. if r ≥ 0 and p2 < 2q, n is the odd integer k for which
ak lies closest to

√
q − p2/2;

3. if r < 0 and p2 ≥ 2q, n = 2;
4. if r < 0 and p2 < 2q, n is the even integer k for which
ak lies closest to

√
q − p2/2.

Then, a necessary and sufficient condition under which all
the roots of H(z) = 0 lie to the left of the imaginary axis
is that

1. r ≥ 0 and (r sin an)/pan < 1, or
2. −q < r < 0 and (r sin an)/pan < 1.

Separating the linear and the nonlinear terms, (2)
becomes

ẋ = L(xt) + F (xt) (4)

where xt ∈ C, xt(θ) = x(t+ θ),−τ ≤ θ ≤ 0, and L : C →
R2, F : C → R2 are given respectively by

See equation (5) above

with ϕ = (ϕ1, ϕ2) ∈ C. Here and throughout this pa-
per, we refer to [25] for notation and classical results on
functional differential equations (FDEs), including such as
equation (4).

The characteristic equation for the linearization of
equation (4) at (0, 0) is

λ2 + aλ+ (b − cf ′(0)) + chf ′(0)e−λτ = 0. (6)

Let s = λτ . Then we have
[
s2 + aτs+ (b − cf ′(0))τ2

]
es + chf ′(0)τ2 = 0. (7)

The fixed point is locally stable if all roots of the
above equation have negative real parts [25]. For each τ ,
we are interested in the maximum value of h such that
the system is locally stable.

Theorem 1: Denote by wk (k ≥ 0) the sole root of the
equation

cotw = [w2 − (b− cf ′(0))τ2]/aτw

which lies on the interval (kπ, kπ + π). Define the nature
number n as follows:

1. if a2 ≥ 2(b− cf ′(0)), n = 1;
2. if a2 < 2(b − cf ′(0)), n is the odd k for which wk lies

closest to
√

(b − cf ′(0)) − a2/2 τ .

Then, under condition (3), a necessary and sufficient con-
dition that the solution of (2) is asymptotically stable is
that

h <
awn

cf ′(0)τsinwn
.

Proof: Since a > 0, τ > 0, f ′(0) > 0, b− cf ′(0) > 0, h ≥ 0,
a direct application of Lemma 1 to (7) with p = aτ, q =
(b− cf ′(0))τ2 and r = chf ′(0)τ2 proves the claim.

In the following, we study the existence of Hopf bi-
furcation in equation (2) by choosing h as the bifurcation
parameter. First, we would like to know when equation (6)
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has purely imaginary roots λ = ±iω0 (ω0 > 0) at h = h0.
If λ = ±iω0, ω0 > 0, we have

chf ′(0)cosω0τ = ω2
0 − (b− cf ′(0))

chf ′(0)sinω0τ = aω0.

The above equations imply that

cotω0τ =
ω2

0 − (b − cf ′(0))
aω0

≡ g(ω0).

and, consequently,

g′(ω) =
ω2 + (b− cf ′(0))

aω2
> 0.

So, g(ω) is strictly monotonically increasing on (0,+∞),
with limω→0 g(ω) = −∞ and limω→+∞ g(ω) = +∞.
Clearly, g(ω) intersects cotωτ only at a point. Hence,
λ = ±iω0 are simple roots of equation (6), where ω0

is the unique root of cotωτ = ω2−(b−cf ′(0))
aω , and h0 =

aω0

cf ′(0)sinω0τ
.

From [26], we know that all the other roots of
equation (6) have negative real parts. We proceed to cal-
culate Re[dλ/dh] at h = h0. Differentiating equation (6)
with respect to h yields

dλ

dh
=

cf ′(0)e−λτ

chτf ′(0)e−λτ − 2λ− a
.

So, we have

Re
[
dλ

dh

]
λ=iω0
h=h0

=

cf ′(0)[cf ′(0)h0τ − acosω0τ + 2ω0sinω0τ ]
(ch0τf ′(0)cosω0τ − a)2 + (ch0τf ′(0)sinω0τ + 2ω0)2

.

From the above analysis, we have the following result.

Theorem 2: Under condition (3), if cf ′(0)h0τ−acosω0τ+
2ω0sinω0τ �= 0, then as h pass through the critical value
h0 = aω0

cf ′(0)sinω0τ
, there is a Hopf bifurcation of system (1)

at its equilibrium (0, 0), where ω0 is the sole root of
cotωτ = ω2−(b−cf ′(0))

aω .
Remark: Note that if we let w = ω0τ , then the

constant h0 in Theorem 2 can be rewritten as h0 =
aw

cf ′(0)τsinw
, which is consistent to that in Theorem 1.

3 Direction and stability of bifurcating
periodic solutions

In this section, we study the direction and stability of the
bifurcating periodic solutions. The method used here is
based on the normal form theory developed by Faria and
Magalhães [22]. This method computes normal forms for
retarded functional differential equations, without com-
puting beforehand the center manifold of the singularity.

As in [21], in the following we assume f ′′(0) =
0, f ′′′(0) �= 0. Define Λ = {−iω0, iω0} and introduce the
new parameter β = h − h0. Equation (4) can be rewrit-
ten as

ẋ = L0(xt) + F0(xt, β) (8)

where

L0(ϕ) =[
ϕ2(0)

−(b− cf ′(0))ϕ1(0) − aϕ2(0) − ch0f
′(0)ϕ1(−τ)

]

F0(ϕ) =
[

0

−cf ′(0)βϕ1(−τ) + cf′′′(0)
6 ϕ3

1(0) − cf′′′(0)
6 (h0 + β)ϕ3

1(−τ) + · · ·

]
.

Following the formal adjoint theory of FDEs [25], let
the phase space C be decomposed according to Λ as
C = P

⊕
Q, where P is the center space for ẋ = L0(xt),

i.e., P is the generalized eigenspace associated with Λ.
Consider the bilinear form (·, ·) associated with the linear
equation ẋ = L0(xt) [23]. Let Φ and Ψ be bases for P
and P ∗ associated with the eigenvalues ±iω0 of the ad-
joint equation, respectively, and normalize them so that
(Φ, Ψ) = I. In complex coordinates, Φ, Ψ are written as
2 × 2 matrices of the form

Φ(θ) = [φ1(θ), φ2(θ)], φ1(θ) = eiω0θv,

φ2(θ) = φ1(θ), −τ ≤ θ ≤ 0,

Ψ(s) =
[
ψ1(s)
ψ2(s)

]
, ψ1(s) = e−iω0suT ,

ψ2(s) = ψ1(s), 0 ≤ s ≤ τ (9)

where the bar means complex conjugation, uT is the trans-
pose of u, and u, v are vectors in C2 such that

L0(φ1) = iω0v, uTL0(eiω0sI) = iω0u
T , (ψ1, φ1) = 1.

(10)
Note that Φ̇ = ΦB, where B is the diagonal matrix B =
diag(iω0,−iω0). From (10), we have

v2 = iω0v1,
[−(b− cf ′(0)) − ch0f

′(0)e−iω0τ
]
v1

= (a+ iω0)v2,

u1 = (a+ iω0)u2,
[−(b− cf ′(0)) − ch0f

′(0)e−iω0τ
]
u2

= iω0u1. (11)

Hence, we can select

v =
[
v1
v2

]
=
[

1
iω0

]
, u =

[
u1

u2

]
= u1

[
1
1

a+iω0

]
(12)

with
u1 =

a+ iω0

a+ 2iω0 − ch0f ′(0)τe−iω0τ
.
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Here and in the following, we refer to [22] for results
and explanations of several notations involved. Enlarging
the phase space C by considering the space BC and using
the decomposition xt = Φz(t) + yt, z ∈ C2, yt ∈ Q1, we
decompose system (8) as

{
ż = Bz + Ψ(0)F0(Φz + y, β)
ẏ = AQ1y + (I − π)X0F0(Φz + y, β). (13)

Consider the Taylor formula

Ψ(0)F0(Φz + y, β) =
1
2
f1
2 (z, y, β) +

1
6
f1
3 (z, y, β) + h.o.t.

where f1
j (z, y, β) (j = 2, 3) are homogeneous polynomials

in (z, y, β) of degree j with coefficients in C2 and h.o.t.
stands for higher order terms. The normal form on the
2-dimensional center manifold of the origin and β = 0 is
given by

ż = Bz +
1
2
g1
2(z, 0, β) +

1
6
g1
3(z, 0, β) + h.o.t. (14)

where g1
2 , g

1
3 are second and third order terms in (z, β),

respectively.
Using the notations in [22], we have

1
2
g1
2(z, 0, β) =

1
2
ProjKer(M1

2 )f
1
2 (z, 0, β)

where ProjSf is the projection of f on S, and

Ker(M1
2 ) = span

{(
z1β

0

)
,

(
0
z2β

)}
.

After some computation, we obtain

1
2
g1
2(z, 0, β) =

[
A1z1β
A1z2β

]

with
A1 = −cf ′(0)e−iω0τu2.

To compute the cubic terms, we first deduce that, af-
ter the change of variables that transformed the quadratic
terms f1

2 (z, y, β) into g1
2(z, y, β), the coefficients of the

third order terms at y = 0, β = 0 are still given by
1
6f

1
3 (z, 0, 0) (because f ′′(0) = 0, implying f1

2 (z, y, 0) = 0).
This implies that [22]

1
6
g1
3(z, 0, β) =

1
6
ProjKer(M1

3 )f
1
3 (z, 0, β)

where

Ker(M1
3 ) =

span
{(

z2
1z2
0

)
,

(
z1β

2

0

)
,

(
0

z1z
2
2

)
,

(
0

z2β
2

)}
.

However, the terms O(|z|β2) are irrelevant to the deter-
mination of the generic Hopf bifurcation. Hence, we write

1
6
g1
3(z, 0, β) =

1
6
ProjSf

1
3

(
z, 0, 0) +O(|z|β2

)

for

S := span
{(

z2
1z2
0

)
,

(
0

z1z
2
2

)}
.

Some computations yield

1
6
g1
3(z, 0, β) =

[
A2z

2
1z2

A2z1z
2
2

]
+O(|z|β2)

with

A2 =
cf ′′′(0)

2
(1 − h0e

−iω0τ )u2.

Thus, we obtain the normal form (14) with the co-
efficients A1, A2 given explicitly in terms of the origi-
nal equation (4), without the need to compute the cen-
ter manifold beforehand. The normal form (14) can be
written in real coordinates (x, y), through the change of
variables z1 = x − iy, z2 = x + iy. In polar coordi-
nates (r, θ), x = rcosθ, y = rsinθ, this normal form be-
comes 


ṙ = K1βr +K2r

3 +O(β2r + |(r, β)|4)

θ̇ = −ω0 +O(|(r, β)|)
(15)

where K1 := ReA1,K2 := ReA2.
We have the following theorem.

Theorem 3: In formula (15), the sign ofK1K2 determines
the direction of the Hopf bifurcation: if K1K2 < 0 (> 0),
then the Hopf bifurcation is supercritical (subcritical) and
the bifurcating periodic solutions exist for h > h0 (< h0);
the sign of K2 determines the stability of the bifurcating
periodic orbits: the bifurcating periodic orbits is stable
(unstable) if K2 < 0 (> 0).

4 A numerical example

Consider an example in the form of system (1), with
a = 1, b = 1.1, c = 1, τ = 1, and f(.) = tanh(.). The
theoretical analysis in Section 2 leads to

ω0 = 0.9017, h0 = 1.1496

It then follows from the results in Section 3 that

K1 = 0.2627, K2 = −0.3408.

These calculations prove that the equilibrium (0, 0) is sta-
ble when h < h0, as shown by Figure 1, where h = 1.1.
When h passes through the critical value h0 = 1.1496,
the equilibrium losses its stability and a Hopf bifurcation
occurs, i.e., a family of periodic solutions bifurcate from
the equilibrium. Each individual periodic orbit is stable
for K2 < 0. Since K1K2 < 0, the bifurcating periodic so-
lutions exist at least for values of h slightly larger than
the critical value. Choosing h = 1.4, as predicted by the
theory, Figure 2 shows that there is an orbitally stable
limit cycle.
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Fig. 1. Phase plot and waveform plot for system (1) with h = 1.1.
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Fig. 2. Phase plot and waveform plot for system (1) with h = 1.4.
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Fig. 3. Phase plot and waveform plot when h = 0.7.

5 Chaotic behavior

In this section, we study the dynamical behavior of sys-
tem (1) with the activation function f(x) = xe−x2/2 and
a = 0.8, b = 1, c = 5, τ = 5, and let h be a variable param-
eter. It is noted that several other parameters have also
been examined and shown to exhibit similar dynamical
phenomena. Due to limitation of space, those results are
not presented here.

When h < 0.65, the system is stable. When increas-
ing h to h = 0.7, the system produces a periodic or-
bit. When h = 0.7, the phase plot and the waveform
plot of x1(t) is shown in Figure 3. When the value of h
passes 0.9, the system becomes chaotic. In Figure 4, we
show the phase plot when h = 1.0, and in Figure 5 we
show the waveform of x1(t) and the power spectrum plots
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Fig. 4. Phase plot when h = 1.0.
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Fig. 5. Waveform and power spectrum plots when h = 1.0.
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Fig. 6. Phase plot when h = 5.0.

when h = 1.0. When h = 5.0, the phase plot and the wave-
form of x1(t), and the power spectrum plots, are shown in
Figures 6 and 7, respectively. From these figures, we can
see that the system is also chaotic, but it is different from
the case of h = 1.0.

6 Conclusions

A single delayed neuron model with inertial term has been
investigated in this paper. Hopf bifurcation is studied by
using the normal form theory of retarded FDEs, in which
the coefficients of the normal form are obtained in terms of
the original delayed equation directly, without the need to
compute the center manifold beforehand, which simplifies
the computational procedure. With a nonmonotonic acti-
vation function, chaotic behavior has also been observed
in this system.
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